If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3d)^2=3^8
We move all terms to the left:
(3d)^2-(3^8)=0
We add all the numbers together, and all the variables
3d^2-6561=0
a = 3; b = 0; c = -6561;
Δ = b2-4ac
Δ = 02-4·3·(-6561)
Δ = 78732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{78732}=\sqrt{26244*3}=\sqrt{26244}*\sqrt{3}=162\sqrt{3}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-162\sqrt{3}}{2*3}=\frac{0-162\sqrt{3}}{6} =-\frac{162\sqrt{3}}{6} =-27\sqrt{3} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+162\sqrt{3}}{2*3}=\frac{0+162\sqrt{3}}{6} =\frac{162\sqrt{3}}{6} =27\sqrt{3} $
| 5m^2+12m+8=0 | | 3t–45=4t–67 | | 2p=p+37 | | 3g=9^5 | | 3g=g5 | | p+37=2p | | 5^3h=5^7 | | -19=-9w | | x|2=9 | | 21x-x=33 | | 6x-12+2x+16+2x+10=180 | | 1/4(x-5)=(-3) | | (x+4)+x+6x=180 | | 2/x+√x^2-1=6x+8/x^2+4x | | 3x+1/7-2+4x/3=-5x-4/14+7x/6 | | 7x-23+2x=-3 | | 1/4(x-5)=-13/4 | | x-25/7=50 | | Z=4+(z-4) | | 32x−4=−9 | | x+1/5-3x=8 | | 3x-50=6x-10 | | 72x+1=0 | | X^2-x+80=0 | | 75/30=4×-10/x+5 | | X^2-x+180=0 | | 112+2h=916 | | 4x-4=-38 | | 6(x+16)=1128 | | 1,128=6(x+16) | | 5x-1=13x-79 | | 3x+90=2x+30 |